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Abstract

A multiphase-field model for the description of coalescence in a binary alloy is solved numerically using adaptive

finite elements with high aspect ratio. The unknown of the multiphase-field model are the three phase fields (solid phase

1, solid phase 2, and liquid phase), a Lagrange multiplier and the concentration field. An Euler implicit scheme is used

for time discretization, together with continuous, piecewise linear finite elements. At each time step, a linear system

corresponding to the three phases plus the Lagrange multiplier has to be solved. Then, the linear system pertaining to

concentration is solved. An adaptive finite element algorithm is proposed. In order to reduce the number of mesh

vertices, the generated meshes contain elements with high aspect ratio. The refinement and coarsening criteria are based

on an error indicator which has already been justified theoretically for simpler problems. Numerical results on two test

cases show the efficiency of the method.

� 2003 Elsevier Inc. All rights reserved.
1. Introduction

Over the last decade, considerable progress has been made in numerical simulation of solidification

microstructures [1]. Although sharp interface models are still in development for the description of
dendritic growth (see, for instance [2,3] for recent works), the phase-field has emerged as a method of

choice, namely due to the advantage of avoiding the difficult problem of tracking sharp interfaces in two

or three space dimensions. The principles of the phase-field model have been described in detail in

numerous publications [4–17] (see [14,15] for recent reviews and [4–7,16,17] for some of the mathe-

matical aspects). The idea is to describe the location of the solid and liquid phases in the computational
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domain by introducing an order parameter – the phase field – which varies smoothly from one to zero

(sometimes from )1 to +1) through a diffuse interface. Partial differential equations describing the

evolution of the phase and temperature fields (or concentration for thermodynamic systems with more
than one component) are obtained by minimizing a Gibbs free energy function. The phase-field concept

has been extended to deal with problems involving more than two phases thus introducing multiple

order parameters, for instance in eutectic or peritectic reactions [18–20]. The so-called multiphase-field

approach was also used to study the coalescence between dendrite arms and solid regions belonging to

different grains in a binary alloy [21].

All of the phase-field models are very challenging from the numerical point of view. The main difficulty is

due to the very rapid change of the phase field (and also the concentration field in alloys) across the diffuse

interface, whose thickness has to be taken very small to correctly capture the physics of the phase trans-
formation. Since we are interested in coalescence of binary alloys, the width of the diffuse interface should

be between 1 and 10 nm. A high spatial resolution is, therefore, needed to describe the smooth transition,

and consequently explicit methods formulated on regular grids require very large numbers of grid points

and time steps. In order to reduce the computational time and the memory requirements, adaptive finite

elements have been developed [22,23], using isotropic finite elements. Recently, a phase-field model based

on adaptive finite elements with high aspect ratio and an implicit formulation of diffusion terms was

proposed in order to further reduce the number of vertices and time steps required for a computation [24].

The model uses refinement and coarsening criteria based on an error indicator which was justified theo-
retically for simpler problems in [25,26].

The goal of this paper is to use adaptive finite elements with high aspect ratio to perform multiphase-field

computations with the model of Rappaz et al. [21]. This paper contains three original contributions. First,

the model of Rappaz et al. [21] is extended to include the anisotropy of surface energy. We found it more

convenient to write the model in weak form, this being also more suitable to the use of finite elements.

Second, in order to avoid numerical instabilities due to the constraint between the phases (the sum of all the

phase fields must be one), we have adopted an implicit formulation that couples all the unknowns at each

time step. We prove that the obtained linear system is invertible, this being the first step towards well-
posedness of the model. Third, adaptive finite elements with high aspect ratio are used in order to reduce

the number of mesh vertices, therefore, a suitable error indicator must be introduced to define the re-

finement and coarsening criteria. For details about the adaptive procedure, we refer to papers published

elsewhere for simpler problems [24–26]. The use of adaptive finite elements with high aspect ratio is of great

interest for coalescence problems, due to the fact that a realistic value of interface thickness (about 1 nm)

has to be taken for a quantitative description of the problem. (If coalescence is not the issue, computations

of dendritic growth can generally be performed with a larger interface thickness without introducing a

substantial deviation from the sharp interface problem.)
The outline of the paper is the following. In the following section, the model of Rappaz et al. [21] is

presented and extended to introduce the anisotropy of the surface energy. The corresponding weak for-

mulation is proposed in Section 3 and the numerical method in Section 4. Section 5 is devoted to the

adaptive finite element algorithm and the refinement and coarsening criteria. In Section 6, numerical results

for two test cases are presented to illustrate the efficiency of the method. Finally, the proof that the linear

system obtained in Section 4 is invertible is proposed in Appendix A.
2. The model

The model is based on the multiphase-field approach developed in [21] to describe solidification and

coalescence of several grains in a binary alloy. The unknowns are two solid phase fields /1 and /2 cor-

responding to two grains, the liquid phase field /3, the Lagrange multiplier corresponding to the constraint
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/1 þ /2 þ /3 ¼ 1; ð1Þ

and the concentration field c (for instance, the concentration of carbon into iron), see Fig. 1.
Following [21], a free energy functional is formulated in the computational domain X. It can be written

as the sum of the Gibbs free energy associated with phase transformations plus double well barriers and an

interfacial energy contribution. The anisotropic interfacial energy contribution Jint can be written as:

Jintð/1;/2;/3Þ ¼
�212
2

Z
X
a2ðh12ðrð/1;/2ÞÞÞjrð/1;/2Þj

2 þ �213
2

Z
X
a2ðh13ðrð/1;/3ÞÞÞjrð/1;/3Þj

2

þ �223
2

Z
X
a2ðh23ðrð/2;/3ÞÞÞjrð/2;/3Þj

2
:

Here, �12, �13, and �23 are positive parameters,

rð/i;/jÞ ¼ /ir/j � /jr/i ði; jÞ 2 fð1; 2Þ; ð1; 3Þ; ð2; 3Þg;

a is the real valued function defined as in [13] by

aðhÞ ¼ 1þ �a cosðjhÞ 8h 2 R; ð2Þ

�a is the anisotropy coefficient and j the symmetry order of the crystal (that is the number of primary

dendrite arms). Finally hij, ði; jÞ 2 fð1; 2Þ; ð1; 3Þ; ð2; 3Þg, is defined for all n ¼ ðn1; n2ÞT 2 R2 by

cos hijðnÞ
�

þ h0ij

�
¼ n1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðn1Þ2 þ ðn2Þ2
q ; ð3Þ

where h0ij are given parameters. For instance, h013 (resp., h
0
23) corresponds to the anisotropy growth angle of a

dendrite made out of phase 1 (resp., phase 2) into the liquid, see Fig. 2. The Gibbs free energy associated

with phase transformation Jtr can be written as

Jtrð/1;/2;/3Þ ¼
Z
X

L
Tm

ml

c
/3 þ kð1� /3Þ

�
� T � Tm

ml

�
/3

3 10
�

� 15/3 þ 6/2
3

�
:

Here, L is the volumetric latent heat, Tm the melting temperature of the pure material (i.e., when the

concentration is zero), T the current temperature (homogeneous in the whole computational domain X), ml
Fig. 1. Solidification of a binary alloy using the multiphase-field model. Grains 1 and 2 are solid phases. Phase 3 is the liquid phase. At

initial time three solid regions are present in the computational domain (left). Two of them correspond to the same grain (for instance,

two arms of the same three-dimensional dendrite). After some time, the two regions belonging to the same grain have coalesced,

whereas the two grains are still separated by a liquid film.



Fig. 2. Example of anisotropy of surface energy between phases 1 and 3. The angle h013 corresponds to the orientation of the crystal

with respect to the reference axis.
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the slope of the liquidus line, and k the partition coefficient in the phase diagram. Finally, the contribution

of the double well potentials Jdw can be written as

Jdwð/1;/2;/3Þ ¼
Z
X
W12/

2
1/

2
2 þ W13/

2
1/

2
3 þ W23/

2
2/

2
3;

where W12, W13, and W23 are positive parameters.

Let us introduce the Lagrangian

Lð/1;/2;/3; kÞ ¼ ðJint þ Jtr þ JdwÞð/1;/2;/3Þ þ
Z
X
kð/1 þ /2 þ /3 � 1Þ:

The set of functions /1, /2, /3 that minimize the functional Jint þ Jtr þ Jdw under the constraint (1)

must satisfy DLð/1;/2;/3; kÞ ¼ 0, where D denotes the formal Gateaux derivative. Then, given the

kinetic coefficient M , the multiphase-field equations correspond to the following set of parabolic

equations:

1

M
o/1

ot
þD/1

Lð/1;/2;/3; kÞ ¼ 0;

1

M
o/2

ot
þD/2

Lð/1;/2;/3; kÞ ¼ 0;

1

M
o/3

ot
þD/3

Lð/1;/2;/3; kÞ ¼ 0;

/1 þ /2 þ /3 � 1 ¼ 0:

ð4Þ

Following [20,21,27], this set of equations is supplemented with solute conservation

oc
ot

¼ div Dð/3Þrc
�

� Dð/3Þð1� kÞc
/3 þ kð1� /3Þ

r/3

�
; ð5Þ

where Dð/3Þ ¼ Dsð1� /3Þ þ Dl/3, Ds and Dl being the solid and liquid diffusion coefficients, respec-

tively.
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3. Weak formulation

Let us consider the generic term of the interface energy Jint defined by

Jð/i;/jÞ ¼
�2ij
2

Z
X
a2ðhijðrð/i;/jÞÞÞjrð/i;/jÞj

2
;

for ði; jÞ 2 fð1; 2Þ; ð1; 3Þ; ð2; 3Þg. The formal Gateaux derivative in direction ðwi;wjÞ is given by

DJð/i;/jÞðwi;wjÞ ¼ �2ij

Z
X
a2ðhijðrð/i;/jÞÞÞrð/i;/jÞ �Drð/i;/jÞðwi;wjÞ

þ �2ij

Z
X
aa0ðhijðrð/i;/jÞÞÞrhijðrð/i;/jÞÞ �Drð/i;/jÞðwi;wjÞjrð/i;/jÞj

2
;

where, using the definition of r, we have

Drð/i;/jÞðwi;wjÞ ¼ rð/i;wjÞ þ rðwi;/jÞ;

and where, using (3), we have

jnj2rhijðnÞ ¼ jnj2
ohij
oni

ðni; njÞ
ohij
onj

ðni; njÞ

 !
¼ �nj

ni

� �
:

Therefore, we obtain

DJð/i;/jÞðwi;wjÞ ¼
Z
X
ðBijð/i;/jÞrð/i;/jÞÞ � ðrð/i;wjÞ þ rðwi;/jÞÞ;

the matrix Bij being defined by

Bijð/i;/jÞ ¼ �2ij
a2ðhijðrð/i;/jÞÞÞ �aa0ðhijðrð/i;/jÞÞÞ
aa0ðhijðrð/i;/jÞÞÞ a2ðhijðrð/i;/jÞÞÞ

� �
:

Using again the definition of r, we have

DJð/i;/jÞðwi;wjÞ ¼
Z
X

/2
i ðBijr/jÞ � rwj

�
� /i/jðBijr/iÞ � rwj þ /2

j ðBijr/iÞ � rwi

� /i/jðBijr/jÞ � rwi þ /iwiðBijr/jÞ � r/j � /jwiðBijr/iÞ � r/j

þ /jwjðBijr/iÞ � r/i � /iwjðBijr/jÞ � r/i

�
: ð6Þ

From the definition of the interfacial energy Jint, we have

DJintð/1;/2;/3Þðw1;w2;w3Þ ¼
X

ði;jÞ2fð1;2Þ;ð1;3Þ;ð2;3Þg
DJð/i;/jÞðwi;wjÞ;

so that, using (6) we obtain the following condensed formulation:

DJintð~/;~wÞ ¼ ðAð~/;r~/Þr~/;r~wÞ þ ð ~Að~/;r~/Þ~/;~wÞ:

Here, ð�; �Þ stands for the L2ðXÞ scalar product, that is
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ð~f ;~gÞ ¼
Z
X

~f �~g;

the vectors ~/;~w 2 R3 and r~/;r~w 2 R6 are defined by

~/ ¼
/1

/2

/3

0
@

1
A; ~w ¼

w1

w2

w3

0
@

1
A; r~/ ¼

r/1

r/2

r/3

0
@

1
A; r~w ¼

rw1

rw2

rw3

0
@

1
A;

and the matrices A and ~A are defined by
Að~/;r~/Þ ¼
/2

2B12 þ /2
3B13 �/1/2B12 �/1/3B13

�/1/2B12 /2
1B12 þ /2

3B23 �/2/3B23

�/1/3B13 �/2/3B23 /2
1B13 þ /2

2B23

0
B@

1
CA;

~Að~/;r~/Þ ¼
~A11 �ðB12r/1Þ � r/2 �ðB13r/1Þ � r/3

�ðB12r/2Þ � r/1
~A22 �ðB23r/2Þ � r/3

�ðB13r/3Þ � r/1 �ðB23r/3Þ � r/2
~A33

0
B@

1
CA;

with

~A11 ¼ ðB12r/2Þ � r/2 þ ðB13r/3Þ � r/3;

~A22 ¼ ðB12r/1Þ � r/1 þ ðB23r/3Þ � r/3;

~A33 ¼ ðB13r/1Þ � r/1 þ ðB23r/2Þ � r/2:

The reader should note that, when anisotropy is neglected in the interfacial energy – aðhÞ ¼ 1 in (2) – then

the matrix A depends only on ~/, whereas the matrix ~A depends only on ~r/. This property will allow us to

prove that the linear system resulting from time and space discretization is stable for any time and space

steps, see Appendix A.
We are now in position to write the weak formulation corresponding to (4), plus natural boundary

conditions. We are looking for ~/ and k such that

1

M
o~/
ot

;~w

 !
þ ðAð~/;r~/Þr~/;r~wÞ þ ð ~Að~/;r~/Þ~/;~wÞ þ ðSðc;~/Þ;~wÞ þ ðk;w1 þ w2 þ w3Þ ¼ 0;

ð/1 þ /2 þ /3; lÞ ¼ ð1; lÞ;
ð7Þ

for all test functions ~w and l. Here, Sðc;~/Þ denotes the low-order term given by the sum of the Gateaux

derivatives of the double well potentials Jdw and the phase transformation energy Jtr, thus

Sðc; ~/Þ ¼
2 W12/

2
2 þ W13/

2
3

� �
/1

2 W12/
2
1 þ W23/

2
3

� �
/2

2 W13/
2
1 þ W23/

2
2

� �
/3 þ sðc; T ;/3Þ

0
B@

1
CA;

with

sðc; T ;/3Þ ¼ 30
L
Tm

ml

c
/3 þ kð1� /3Þ

�
� T � Tm

ml

�
/2

3ð1� /3Þ
2
:
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Note that, in order to obtain a formulation similar to those of Nestler and co-workers [20,21,27], we did

not take into account the Gateaux derivative of c=ð/3 þ kð1� /3ÞÞ with respect to /3 in the above

formulation. Also note that, if the test functions ~w and l belong to the functional spaces H 1ðXÞ and
L2ðXÞ, then the above weak formulation makes sense whenever ~/ and k belong to H 1ðXÞ \ L1ðXÞ and

L2ðXÞ, for almost all time t.
4. Time and space discretization

For any h > 0, consider a finite element mesh of the computational domain X into triangles K with size

less than h. Let Vh be the usual finite element space of continuous functions, piecewise linear on the triangles
of the mesh. Let s be the time step, tn ¼ ns, n ¼ 0; 1; 2; . . . and let ~/n

h, k
n
h, and cnh be finite element ap-

proximations of ~/ðtnÞ, kðtnÞ, and cðtnÞ, respectively. Our numerical method is as follows. At each time step,

we first seek for ~/nþ1
h ¼ ð/nþ1

1h ;/nþ1
2h ;/nþ1

3h ÞT, knþ1
h in the finite element space Vh such that

1

M

~/nþ1
h �~/n

h

s
;~wh

 !
þ A ~/n

h;r~/n
h

� �
r~/nþ1

h ;r~wh

� �
þ ~A ~/n

h;r~/n
h

� �
~/nþ1

h ;~wh

� �

þ S cnh;~/
n
h

� �
; ~wh

� �
þ knþ1

h ;w1h

�
þ w2h þ w3h

�
¼ 0;

ð/1h þ /2h þ /3h; lhÞ ¼ ð1; lhÞ;

ð8Þ

for all test functions ~w ¼ ðw1h;w2h;w3hÞ
T
and lh in Vh. Then, we seek for cnþ1

h in the finite element space Vh
such that
Z
X

cnþ1
h � cnh

s
dh þ

Z
X
D /nþ1

3h

� �
rcnþ1

h rdh ¼
Z
X

Dð/nþ1
3h Þð1� kÞcnh

/nþ1
3h þ k 1� /nþ1

3h

� �r/nþ1
3h � rdh; ð9Þ

for all test function dh in the finite element space Vh. The key observation is that in (8) the matrices A and ~A
are evaluated at the previous time step which yields a linear problem. Moreover, it is proved in Appendix A

(using the inf–sup framework) that this particular choice yields a linear system which is invertible for all

space and time steps h and s, whenever the anisotropy is neglected in the interfacial energy, that is when

aðhÞ ¼ 1 in (2). This comforts us about the parabolic nature of the model. Note that all the above integrals
are approached using an order two quadrature formula.

Let us write the corresponding algebraic formulation. Let J be the number of vertices of the finite el-

ement mesh, the vertices are denoted Pj, j ¼ 1; . . . ; J . Let Nj be the continuous functions, piecewise linear on

the triangles of the mesh and such that NjðPjÞ ¼ dij (Kronecker symbol). Clearly N1, N2, . . ., NJ is a basis of

Vh and we have, for all x in X:

/n
1hðxÞ ¼

XJ
j¼1

/n
1jNjðxÞ; /n

2hðxÞ ¼
XJ
j¼1

/n
2jNjðxÞ; /n

3hðxÞ ¼
XJ
j¼1

/n
3jNjðxÞ;

knhðxÞ ¼
XJ
j¼1

knjNjðxÞ; cnhðxÞ ¼
XJ
j¼1

cnjNjðxÞ;

and define the vectors
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~/n ¼

..

.

/n
1j

/n
2j

/n
3j

..

.

0
BBBBBBB@

1
CCCCCCCA
; ~kn ¼

..

.

knj
..
.

0
BB@

1
CCA; ~cn ¼

..

.

cnj
..
.

0
BB@

1
CCA: ð10Þ

The algebraic formulation corresponding to (8) and (9) thus consists in seeking ~/nþ1 2 R3J , and knþ1 2 RJ

such that

An BT

B 0

� �
~/nþ1

~knþ1

 !
¼

~f n

~g

� �
; ð11Þ

then seeking~cnþ1 2 RJ such that

Dn~cnþ1 ¼ ~‘ð/nþ1Þ:

Here, the 3J � 3J matrix An corresponds to the time derivative and interfacial energy terms, the J � 3J
matrix B corresponds to the constraint (1), and the J � J matrix Dn to the time derivative and diffusion

terms in (5). In Appendix A, we prove that the linear system (11) is uniquely solvable without any re-

strictions concerning the space and time steps h and s, using the classical theory of saddle-point problems

(see, for instance [28]), provided anisotropy of interfacial energy is neglected. In practice, the above linear

system is solved using the GMRES algorithm with a classical ILU algebraic preconditioner.
Following [16,29], we expect that the double well potentials induce a stability condition between the

time step and the amplitude of the double wells. Even for the simplest phase-field equation, namely the

Allen–Cahn equation �ut ¼ �Du� ð1=�Þðu3 � uÞ, the implicit Euler scheme has a unique solution if s6 �2.
The explicit scheme is stable whenever s6 h2=4 which is much worse than the previous stability condition

if the mesh contains ten or twenty vertices in the direction orthogonal to the interface. Finally, the semi-

implicit scheme (diffusion implicit, double well terms explicit) shows the same stability condition as the

implicit scheme. Thus, coming back to our finite element formulation, we expect that s must be smaller

than a constant times 1=MW , where M is the kinetic coefficient of (4) and W is the maximum of W12, W13,
and W23. Since these coefficients are related to the width d of the solid–liquid transition layer (see Section 6

hereafter), in practice s must be smaller than a constant times d2, which does not allow the use of large

time steps. However, due to the implicit treatment of all diffusive terms, there is no stability condition

between the time step s and the space step h. Finally, since relatively small time steps are used, the number

of iterations required to solve the linear systems is small, always smaller than 50, so that preconditioning

is not an issue.
5. Adaptive finite elements with high aspect ratio

Now we propose an adaptive finite element algorithm, the time step s being fixed. Let N be the number

of time steps. The goal of the adaptive algorithm is to build triangulations with high aspect ratio Tn
h,

n ¼ 1; . . . ;N , such that the relative estimated error in the L2ð0; T ;H 1ðXÞÞ norm is close to a preset tolerance

TOL. For this purpose, we introduce an error indicator which requires some further notations. This error

indicator measures the error in the directions of maximum and minimum stretching of the triangle. The

goal of the adaptive algorithm is then to equidistribute the error indicator in the directions of maximum
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and minimum stretching and to align the directions of maximum and minimum stretching with the di-

rections of maximum and minimum error. We refer to [26] for a theoretical justification in the framework of

the heat equation and to [24] for phase field problems.
For any triangle K of the mesh, let TK : K̂ ! K be the affine transformation which maps the reference

triangle K̂ into K. Let MK be the Jacobian of TK that is

x ¼ TKðx̂Þ ¼ MK x̂þ tK :

Since MK is invertible, it admits a singular value decomposition MK ¼ RT
KKKPK , where RK and PK are or-

thogonal and where KK is diagonal with positive entries. In the following, we set

KK ¼ k1;K 0

0 k2;K

� �
and RK ¼ rT1;K

rT2;K

� �
;

with the choice k1;K P k2;K . A simple example of such a transformation is x1 ¼ Hx̂1, x2 ¼ hx̂2, withH P h, thus

MK ¼ H 0

0 h

� �
; k1;K ¼ H ; k2;K ¼ h; r1;K ¼ 1

0

� �
; r2;K ¼ 0

1

� �
;

see Fig. 3. In other words r1;K and r2;K are the directions of maximum and minimum stretching, while k1;K
and k2;K measure the amplitude of stretching. Proceeding as in [24,26], we introduce chs the continuous,

piecewise linear approximation in time defined by

chsðx; tÞ ¼
t � tn�1

s
cnhðxÞ þ

tn � t
s

cn�1
h ðxÞ; tn�1

6 t6 tn; x 2 X: ð12Þ

Our simplified error indicator is then defined on each time interval ½tn�1; tn� and each triangle K by

ðgn;KðchsÞÞ
2 ¼

Z tn

tn�1

1

2k1=22;K

ochs
on

� 	









L2ðoKÞ

k21;K rT1;K
~GKðchsÞr1;K

� ��
þ k22;K rT2;K

~GKðchsÞr2;K
� ��1=2

: ð13Þ

Here, ~GKðchsÞ is defined by

~GKðchsÞ ¼
R
K gZZ1 ðchsÞ
� �2

dx
R
K g

ZZ
1 ðchsÞgZZ2 ðchsÞdxR

K g
ZZ
1 ðchsÞgZZ2 ðchsÞdx

R
K gZZ2 ðchsÞ
� �2

dx

 !
; ð14Þ

with gZZ1 ðchsÞ, gZZ2 ðchsÞ being the components of the so-called Zienkiewicz–Zhu error estimator

gZZ1 ðchsÞ
gZZ2 ðchsÞ

� �
¼

ðI �PhÞ ochs
ox1

� �
ðI �PhÞ ochs

ox2

� �
0
B@

1
CA; ð15Þ
Fig. 3. A simple example of transformation from reference triangle K̂ to generic triangle K.
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where Phðochs=ox1Þ and Phðochs=ox2Þ are computed using the formula

Ph
ochs
ox1

� �
ðP Þ

Ph
ochs
ox2

� �
ðP Þ

0
@

1
A ¼ 1P

K2Th
P2K

jKj

P
K2Th
P2K

jKj ochs
ox1

� �
jK

P
K2Th
P2K

jKj ochs
ox2

� �
jK

0
BBBB@

1
CCCCA:

The matrix ~GKðchsÞ is an estimation of the gradient error in triangle K, therefore, the term rT1;K
~GKðchsÞr1;K

in (13) contributes to measuring the error in the direction of the triangle�s maximum stretching and the

term Z tn

tn�1

1

2k1=22;K

ochs
on

� 	









L2ðoKÞ

� k1;K rT1;K
~GKðchsÞr1;K

� �1=2

is nothing but the estimated error in the direction of the triangle�s maximum stretching.

Our adaptive algorithm aims at building triangulations with high aspect ratio Tn
h, n ¼ 1; . . . ;N such that

the relative estimated error is close to a preset tolerance TOL, that is:

0:75 TOL6

PN
n¼1

P
K2Th

ðgn;KðchsÞÞ
2R T

0

R
X jrchsj2

6 1:25 TOL: ð16Þ

A sufficient condition to satisfy (16) is to build, for each discrete time tn, n ¼ 1; . . . ;N , a triangulation with

high aspect ratio Tn
h such that

0:752 TOL2

NVn
h

Z tn

tn�1

Z
X
jrchsj2 6 ðgn;KðchsÞÞ

2
6

1:252 TOL2

NVn
h

Z tn

tn�1

Z
X
jrchsj2

for all triangle K 2 Tn
h, where NVn

h is the number of vertices of the mesh Tn
h. We then proceed as in [25,26]

to build a mesh having elements with high aspect ratio, using the BL2D mesh generator [30]. At each vertex,

the estimated error in the directions of maximum and minimum stretching is equidistributed, which yields

new desired values of maximum and minimum stretching. Then, the directions of maximum and minimum

stretching are aligned with the directions of maximum and minimum error gradient, namely the eigen-

vectors of the matrix ~GKðchsÞ.
6. Numerical results

6.1. A one-dimensional test case

In [21], a one-dimensional solidification test case was proposed. Our first task is to reproduce the cor-

responding results with two-dimensional computations and meshes with elements having high aspect ratio.

All the data are given in the MKSA unit system.
The model parameters are those of Rappaz et al. [21], and are the following. The phase field parameters

are given by

Wij ¼
3cij
d

; �2ij ¼ 6cijd; M ¼ lTm
6dL

;



Table 1

Parameters used for the simulation

L Tm ml k c12 c13 c23 d l _T Ds Dl

109 1000 )500 0.5 3.0 1.0 1.0 5� 10�8 3� 10�6 )10 10�13 10�11

Fig. 4. The one-dimensional test case.
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where c13, c23 denote the boundary energy of grains 1 and 2 (the solid–liquid interfacial energy), c12 is the
interfacial energy between grains 1 and 2, d is the thickness of the solid–liquid interface, and l a kinetic

coefficient.

We consider the computational domain X ¼ ð0; 10�5Þ2, an alloy with nominal concentration c0 ¼ 4%,

the model parameters being given in Table 1. The temperature is uniform, equals T ð0Þ ¼ 980 �C at initial

time and then decreases with constant rate _T . At initial time, solid 1 is present along the left lateral side,

solid 2 along the right lateral side, see Fig. 4. Surface tension anisotropy is not considered in this test case,
thus �a ¼ 0 in (2). The initial concentrations are those corresponding to the phase diagram, namely

ðT ð0Þ � TmÞ=ml in the liquid region and kððT ð0Þ � TmÞ=mlÞ in the solid region. The time step used is

s ¼ 0:0005, the initial mesh is a 1000� 2 mesh with about 3000 vertices.

In Figs. 5 and 6, the adapted meshes, concentration and liquid phase profiles are shown when setting

TOL ¼ 0:25 in (16), that is to say when requiring 25% of relative estimated error. The mesh is refined in the

horizontal direction only, close to the phase change region. It can be seen that a thin film of liquid remains

entrapped between the two grains during a long time. At time t ¼ 7, the liquid phase field /3 is finally smaller

than 1/3 and the boundary can be considered as dry. Refer to [21] for a discussion of coalescence criteria.
Fig. 7 shows the number of vertices generated by the adaptive algorithm as a function of time, with

several values of TOL. The CPU time required for these computation from t ¼ 0 and 10 (20,000 time steps)

on a PC with Pentium III 1.2 GHz is reported in Table 2. Clearly, when TOL is divided by 2, the number of

vertices is multiplied by a factor less than 4, and so is the CPU time. It should be noted that the aspect ratio

of the triangles can reach values larger than 6000!

In Fig. 8, some results are reported when keeping TOL unchanged, but varying the width d of the solid–

liquid region. Each time d is divided by 2, the time step should be divided by 4, for stability reasons detailed

in Section 4. It can be seen that the CPU time is multiplied by a factor less than eight each time d is divided by
2. This is a favorable situation since a two-dimensional explicit method without adaptive refinement re-

quires, due to the Fourier stability condition, the CPU time to be multiplied by 16 each time d is divided by 2.



Fig. 5. The one-dimensional test case. Numerical results with TOL ¼ 0:25. Adapted meshes (left column), concentration profile

(middle column), and liquid phase field profile (right column) from time t ¼ 1 (first row, temperature T ¼ 970 �C) until time t ¼ 4 (last

row, temperature T ¼ 940 �C).
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6.2. A two-dimensional test case

Now we consider a two-dimensional test case in order to illustrate the possibilities of our numerical

model. At initial time, four circular solid seeds of diameter 4� 10�7 are placed in the computational do-

main X ¼ ð0; 3� 10�5Þ2. The two lower (resp., upper) solid seeds correspond to solid 1 (resp., solid 2). For

instance these two seeds could correspond to two arms of the same three-dimensional dendrite. The an-



Fig. 6. The one-dimensional test case. Numerical results with TOL ¼ 0:25. Adapted meshes (left column), concentration profile

(middle column) and liquid phase field profile (right column) from time t ¼ 5 (first row, temperature T ¼ 930 �C) until time t ¼ 8 (last

row, temperature T ¼ 900 �C).
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isotropic coefficient is �a ¼ 0:04, the angles defined in (3) are h012 ¼ p=8, h013 ¼ 0, h023 ¼ p=4. The temperature

is uniform, equals 900 �C at initial time and then decreases with constant rate _T . The physical parameters

are now those of Table 3. The values of the parameters are physical and are taken from [21], except the

width of the interface d which is 5� 10�8, the physical value being 1–5 nm. In [21], two-dimensional

computations have been performed with physical values, but with a simpler geometry. Indeed, the

boundary conditions were periodic so that the interface at the end of the simulation was along the

boundaries of the computational domain. Explicit finite volume techniques were used and the mesh was



Fig. 8. The one-dimensional test case. Numerical results with TOL ¼ 0:25 and several values of d. Top: number of time steps from

t ¼ 0 to 10, number of vertices of the final mesh, number of generated meshes and CPU time in seconds with respect to d. Bottom:

concentration profile at time t ¼ 8, d ¼ 5� 10�8 (thin line), d ¼ 2:5� 10�8 (dotted line), and d ¼ 1:25� 10�8 (bold line).

Fig. 7. The one-dimensional test case. Numerical results with TOL ¼ 0:25 (thin line), 0.125 (dotted line), and 0.0625 (bold line). Left:

number of vertices of the adapted meshes with elements having high aspect ratio, with respect to time. Right: concentration profile at

time t ¼ 8.

Table 2

The one-dimensional test case

TOL # Vertices # Meshes CPU

0.25 272 49 4809

0.125 849 57 14,734

0.0625 2379 47 46,425

Number of vertices of the final mesh, number of generated meshes and CPU time in seconds with respect to TOL.

Table 3

Parameters used for the simulation

L Tm ml k c12 c13 c23 d l _T Ds Dl

109 1000 )500 0.5 3.0 1.0 1.0 5� 10�8 3� 10�6 )40 10�10 10�10
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Fig. 9. The two-dimensional test case. The two lower (resp., upper) seeds have phase index 1 (resp., 2). Numerical results with

TOL ¼ 0:25. Adapted meshes (left column), concentration field (middle column), and profile along first diagonal (right column) from

time t ¼ 0:5 (first row) until time t ¼ 2 (last row).
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refined along the boundaries of the computational domain. At initial time, d was chosen to be large,
d ¼ 10�8, then at the end of the simulation, as the interface was close to the boundaries of the computa-

tional domain, d was reduced to d ¼ 10�9. The required CPU time was of the order of a week so that no

realistic two-dimensional computations were possible.



Fig. 10. The two-dimensional test case. Numerical results with TOL ¼ 0:25. Zooms of the adapted mesh at time t ¼ 2.
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In Fig. 9, the results corresponding to a computation with time step s ¼ 0:001 and tolerance

TOL ¼ 0:25 are shown. Clearly, the two solid regions having the same phase index (1 for the lower

regions and 2 for the upper ones) merge easily. However, the two resulting grains do not merge due to
the interfacial energy between solid 1 and solid 2. As a consequence, a thin layer of liquid of high

concentration remains between the two grains. Zooms of the final adapted mesh are reported in

Fig. 10. Clearly, the mesh aspect ratio is very large in phase change regions with large radius of

curvature, whereas isotropic triangles are obtained in phase change regions with small radius of cur-

vature. In order to show the potential of our adaptive algorithm, a computation corresponding to the

case when the solid seeds are initially distributed along the diagonals has been performed. The results

are reported in Fig. 11 and are significantly different from those of Fig. 9, showing that several coa-

lescence patterns can be obtained. The asymmetric pattern obtained with this calculation is due to the
anisotropy of the surface energy. The solid regions 2, which are located on the second diagonal, have

preferred growth directions parallel to the diagonals (h023 ¼ p=4), whereas solid regions 1 have their

preferred growth directions aligned with the horizontal and vertical axes (h013 ¼ 0). Since the surface

energy is maximum along the preferred growth directions, it is energetically more favorable to bridge

solid 1 than solid 2.
7. Conclusions and perspectives

A multiphase-field model for the description of coalescence of dendritic grains in a binary alloy has been

implemented numerically using adaptive finite elements with high aspect ratio. At each time step two linear

systems are solved, one for the solute concentration, the other for the phase fields and a Lagrange mul-

tiplier. The implicit treatment of diffusion terms allows the Fourier stability condition to be avoided. The

meshes contain elements having high aspect ratio and are generated automatically during the computation

using a criteria based on an appropriate error indicator.



Fig. 11. The two-dimensional test case. The two seeds along the first (resp., second) diagonal have phase index 1 (resp., 2). Numerical

results with TOL ¼ 0:25. Adapted meshes (left column), concentration field (middle column) and profile along first diagonal (right

column) from time t ¼ 0:5 (first row) until time t ¼ 2 (last row).
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The results obtained for one and two-dimensional problems show the efficiency of the method. The use
of meshes with elements having high aspect ratio allows accurate computations to be performed with

fewer vertices than isotropic finite elements or regular grids. This approach is particularly interesting for

problems where the interface thickness is very small compared to the size of the computational domain.

Each time the interface thickness is divided by 2, the spatial resolution in the vicinity of the interface has
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to be increased by a factor 2 to keep the same accuracy. In methods based on regular grids and explicit

formulations, this corresponds to multiply the CPU time by 16. It was shown that with the present

method this factor is less than 8, even though there is an additional cost due to the resolution of the linear
systems and the remeshing procedure. Therefore, adaptive finite elements with high aspect ratio should be

more efficient than methods based on regular grids and explicit formulations when the interface thickness

is small.
Appendix A. Proof that the linear system (11) is uniquely solvable

From a mathematical standpoint, existence of a solution to the multiphase-field problem (4) and (5)

remains an open problem. In this section, we aim to give some preliminary results in the isotropic case, that

is when �a ¼ 0 in (2), and when �12 ¼ �13 ¼ �23 ¼ 1.

We consider the weak formulation (7) and state the following formal coercivity property.

Lemma A.1. For all function ~w ¼ ðw1;w2;w3Þ
T
such that w1 þ w2 þ w3 ¼ 1, we have

Z
X
jr~wj2 6 4ððAð~wÞr~w;r~wÞ þ ð ~Aðr~wÞ~w; ~wÞÞ:
Proof. Let rð�; �Þ be defined by rðwi;wjÞ ¼ wirwj � wjrwi. Using the fact that w1 þ w2 þ w3 ¼ 1, a simple

calculation yields

rwj ¼ �
X3
k¼1

rðwj;wkÞ; j ¼ 1; 2; 3:

Then, we have

Z
X
jr~wj2 ¼

Z
X

X3
j¼1

jrwjj
2 ¼

Z
X

X3
j¼1

X3
k¼1

rðwj;wkÞ
�����

�����
2

6 4

Z
X

X3
j¼1

X
k>j

jrðwj;wkÞj
2
:

On the other hand, from the calculations of Section 3, we have

ðAð~wÞr~w;r~wÞ þ ð ~Aðr~wÞ~w;~wÞ ¼
Z
X

X3
j¼1

X
k>j

jrðwj;wkÞj
2
;

which completes the proof. �

Now we provide some information about the matrices A and ~A defined in Section 3.

Lemma A.2. Let I be the 2� 2 unit matrix. For all ~n ¼ ðn1; n2; n3ÞT 2 R3 and for all ~f ¼
ðf1; f2; f3; f4; f5; f6ÞT 2 R6, the matrices Að~nÞ and ~Að~fÞ defined by

Að~nÞ ¼
n22 þ n23
� �

I �n1n2I �n1n3I
�n1n2I n21 þ n23

� �
I �n2n3I

�n1n3I �n2n3I n21 þ n22
� �

I

0
B@

1
CA

and
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~Að~fÞ ¼
f23 þ f24 þ f25 þ f26 �ðf1f3 þ f2f4Þ �ðf1f5 þ f2f6Þ
�ðf1f3 þ f2f4Þ f21 þ f22 þ f25 þ f26 �ðf3f5 þ f4f6Þ
�ðf1f5 þ f2f6Þ �ðf3f5 þ f4f6Þ f21 þ f22 þ f23 þ f24

0
@

1
A

are symmetric positive semi-definite. Moreover, the matrix Að~nÞ has eigenvalues kið~nÞ and orthonormal ei-

genvectors Rið~nÞ given by

k1ð~nÞ ¼ k2ð~nÞ ¼ k3ð~nÞ ¼ k4ð~nÞ ¼ n21 þ n22 þ n23; k5ð~nÞ ¼ k6ð~nÞ ¼ 0;

and

R1ð~nÞ ¼ r1ð0; 0; 0;�n3; 0; n2ÞT; R2ð~nÞ ¼ r2 0;
�

� n22
�

þ n23
�
; 0; n1n2; 0; n1n3

�
;

R3ð~nÞ ¼ r1ð0; 0;�n3; 0; n2; 0ÞT; R4ð~nÞ ¼ r2
�
� n22
�

þ n23
�
; 0; n1n2; 0; n1n3; 0

�T
;

R5ð~nÞ ¼ r3ð0; n1; 0; n2; 0; n3ÞT; R6ð~nÞ ¼ r3ðn1; 0; n2; 0; n3; 0ÞT;

where normalization factors ri, i ¼ 1, 2, 3 are given by

r1 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n22 þ n23

q ; r2 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n22 þ n23
� �2 þ n21n

2
2 þ n21n

2
3

q ; r3 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n21 þ n22 þ n23

q :
Proof. The fact that the matrices are positive semi-definite is a consequence of Young�s inequality

(2ab6 a2 þ b2, a; b 2 R). The eigenvalues and eigenvectors of Að~nÞ can be obtained using the Maple soft-

ware, for instance. �

Remark 1. The fact that the matrices Að~/Þ and ~Aðr~/Þ are symmetric positive semi-definite implies that the

interfacial energy contribution Jint defined in Section 2 is convex with respect to r~/ and ~/, respectively.

In order to prove that the linear system (11) is uniquely solvable, we need the following technical result.

Lemma A.3. Let~n ¼ ðn1; n2; n3ÞT 2 R3 such that n1 þ n2 þ n3 ¼ 1. Then, there exists C > 0 (depending on j~nj)
such that, for all~x ¼ ðx1; x2; x3; x4; x5; x6Þ 2 R6 with x1 þ x3 þ x5 ¼ 0 and x2 þ x4 þ x6 ¼ 0, we have

~xTAð~nÞ~xPC~xT~x:
Proof. Let ~n ¼ ðn1; n2; n3ÞT 2 R3 such that n1 þ n2 þ n3 ¼ 1. Let ~x ¼ ðx1; x2; x3; x4; x5; x6Þ 2 R6 such that

x1 þ x3 þ x5 ¼ 0 and x2 þ x4 þ x6 ¼ 0. We can write ~x in the basis of the eigenvectors Rið~nÞ of the matrix

Að~nÞ:

~x ¼
X6
i¼1

aið~nÞRið~nÞ: ðA:1Þ

Since the eigenvectors Ri are orthonormal and since eigenvalues k5 and k6 are zero, we obtain, using the
previous lemma:

~xTAð~nÞ~x ¼
X4
i¼1

ðaið~nÞÞ2kið~nÞ ¼
X4
i¼1

ðaið~nÞÞ2 n21
�

þ n22 þ n23
�
:

Since n1 þ n2 þ n3 ¼ 1, we have, using Young�s inequality n21 þ n22 þ n23 P
1
2
, so that
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~xTAð~nÞ~xP 1

2

X4
i¼1

ðaið~nÞÞ2:

Thus, if we could prove that there exists C > 0 (depending on ~n) such that

ða5ð~nÞÞ2 þ ða6ð~nÞÞ2 6C
X4
i¼1

ðaið~nÞÞ2; ðA:2Þ

we would obtain

~xTAð~nÞ~xP 1

2ð1þ CÞ
X6
i¼1

ðaið~nÞÞ2 ¼
1

2ð1þ CÞ~x
T~x;

and the result would be proved. It thus remain to prove (A.2). For this purpose, we write components 1, 3,

and 5 of (A.1) to obtain:

x1 ¼ �a4r2 n22
�

þ n23
�
þ a6r3n1;

x3 ¼ �a3r1n3 þ a4r2n1n2 þ a6r3n2;

x5 ¼ a3r1n2 þ a4r2n1n3 þ a6r3n3:

Summing these three equations, taking into account the fact that n1 þ n2 þ n3 ¼ 1 and x1 þ x3 þ x5 ¼ 0

yields

a6 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 þ n22 þ n23

q
a4

n22 þ n23 � n1n2 � n1n3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n22 þ n23
� �2 þ n21n

2
2 þ n21n

2
3

q
0
B@ þ a3

n3 � n2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n22 þ n23

q
1
CA;

which yields ja6j6Cðj~njÞðja3j þ ja4jÞ. We then write components 2, 4, and 6 of (A.1) and obtain

ja5j6Cðj~njÞðja1j þ ja2jÞ, which completes the proof. �

We are now in position to prove that the linear system (11) is uniquely solvable. For this purpose, the

finite element scheme (8) is rewritten in the following abstract form:

a ~/n
h

� �
~/nþ1

h ;~wh

� �
þ b knþ1

h ;~wh

� �
¼ f nð~whÞ;

b lh;
~/nþ1

h

� �
¼ ð1; lhÞ;

ðA:3Þ

where the bilinear forms að~/n
hÞ and b are defined for all ~/h ¼ ð/1h;/2h;/3hÞ

T
, ~wh ¼ ðw1h;w2h;w3hÞ

T
and kh in

the finite element space by

a ~/n
h

� �
~/h;

~wh

� �
¼ 1

s
ð~/h;

~whÞ þ A ~/n
h

� �
r~/h;r~wh

� �
þ ~A r~/n

h

� �
~/h;

~wh

� �
;

bðkh;~whÞ ¼ ðkh;w1h þ w2h þ w3hÞ:

We then have the following result.

Lemma A.4. Assume that ~/n
h ¼ ð/n

1h;/
n
2h;/

n
2hÞ

T
is in the finite element space with /n

1h þ /n
2h þ /n

2h ¼ 1. Then,

the finite element scheme (A.3) and therefore the linear system (11) are uniquely solvable.
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Proof. Let V ¼ H 1ðXÞ, let Vh the finite element space of continuous, piecewise linear functions. The goal is

to use Brezzi�s inf–sup framework, see [28], for instance. Let ~/n
h ¼ ð/n

1h;/
n
2h;/

n
2hÞ

T 2 V 3
h be the solution at

previous time with /n
1h þ /n

2h þ /n
2h ¼ 1. We are going to prove that the bilinear forms að~/n

hÞ : V 3 � V 3 ! R

and b : V 0 � V 3 ! R satisfy the following conditions:
(i) There exists C > 0 (depending on ~/n

h) such that for all h; s > 0, for all ~wh ¼ ðw1h;w2h;w3hÞ
T 2 V 3

h such

that w1h þ w2h þ w3h ¼ 0, we have:

a ~/n
h

� �
ð~wh;

~whÞPCjj~whjj
2

V :

(ii) Let lh 2 Vh, we have:

If bðlh;
~whÞ ¼ 0 for all ~wh ¼ ðw1h;w2h;w3hÞ

T 2 V 3
h ; then lh ¼ 0: ðA:4Þ

Note that condition (i) is equivalent to the fact that the matrix An of (11) is coercive on the kernel of B,
whereas condition (ii) corresponds to KerðBTÞ ¼ 0.

Proving condition (ii) is a trivial task. Indeed, choosing ~wh ¼ ðlh; 0; 0Þ
T
in (A.4) yields the result. To

prove condition (i), we consider a function ~wh ¼ ðw1h;w2h;w3hÞ
T 2 V 3

h such that w1h þ w2h þ w3h ¼ 0. Thus,

rw1h þrw2h þrw3h ¼ 0 and we can use Lemma A.3 to obtain

a ~/n
h

� �
ð~wh;

~whÞP
Z
X
A ~/n

h

� �
r~wh � r~wh PC

Z
X
jr~whj

2
;

where C depends on ~/n
h. �

Remark 2. In the case when /n
1h, /

n
2h, and /n

3h 2 ½0; 1�, the constant C in (i) is bounded from below, so that

our discretization procedure inherits the coercivity property of Lemma A.1.
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